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Quantum Chemistry

Obtaining Properties with Quantum Chemistry:
System: {Ri ,Zi}, N
Ri : nuclear positions
Zi : nuclear charge
N: # electrons

Mapping into energy: {Ri ,Zi}
Ψ−→ E

QC equations:
WF: Schrödinger equation ĤΨ = EΨ
DFT: Kohn-Sham equation Ĥeff 𝜑

i
ks = e i𝜑i

ks
𝜌 =

∑︀
i
⃒⃒
𝜑i

ks
⃒⃒2

Mapping into other properties: E ,𝜌 → property

F = 𝜕E
𝜕Ri

Qi =
∫︁

basis i

𝜌 d𝜏 − Zi

Problems related to solving QC equation:
∙ Exponential scaling of computational cost for

large systems:
DFT (cheap method): approximately O(N3

e )
DFT (VASP): close to O(N2

atoms ln Natoms)
Computational Materials Science 6 (1996) 15-50

∙ In global optimizations and high-throughput
screening:
∙ QC equations are extensively solved.
∙ Big data complicate some tasks, such as
extract representative sets.

Dream: functions that map systems ({Ri ,Zi}) into
the energy and properties directly: (without QC
equations)

f ({Ri ,Zi}) = E
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Representation, how ML “see” QC

ML “see” QC system (take the input) as a vector of
values (features) that represent the system.

x = [x1, x2, ...]

Intuitive descriptors:
∙ {Ri ,Zi}.
∙ # bonds, avarege/ranked bond distance.

Qualities of a good representation:
∙ Invariance to the rotation, translation, and

homo-nuclear permutational.
∙ Non-degenerate.
∙ Unique.
∙ Size extensively.

Smooth Overlap of Atomic Positions (SOAP)
Neighbor density function:

𝜌i =
∑︁

j
exp

(︁
−𝜎|r − rj |2

)︁
=

∑︁
nlm

c i
nlmgn(r)Ylm (̂r)

where gn(r) is a orthonormal radial basis function.
X Y Y Y X Y
X X𝜌X

From 𝜌X one can derivate the rotational invariants

xnn′l =
∑︁

m
cnlm(cn′lm)*

which can be employed as elements of a descriptor
vector xX, and x = [xX, xY, xY′ ].
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Paradigms, how ML learn from QC examples/data
Two main classes: Supervised and Unsupervised learning

Supervised learning, simple regression:
Input: X (features), y (target/label)

X =

⎡⎢⎢⎣
x1

x2

...
xN

⎤⎥⎥⎦ =

⎡⎢⎢⎣
x1

1 x1
2 ... x1

M
x2

1 x2
2 ... x2

M
... ... ... ...
xN

1 xN
2 ... xN

M

⎤⎥⎥⎦ y =

⎡⎢⎢⎣
y1

y2

...
yN

⎤⎥⎥⎦
h𝜃(xi): model (map xi → y i)
J(y, h𝜃(X)): cost function

J =
N∑︁
i

⃒⃒
y i − h𝜃(xi)

⃒⃒2

Learning task: argmin𝜃{ln(y, h𝜃(X))}

Input:
{︀

y i , x i}︀ (xi present 1 element/feature)
Polinomial model: h𝜃(x) = 𝜃0 + 𝜃1x1 + 𝜃2x2 + 𝜃3x3

Cost function: J =
∑︀

i
⃒⃒
y i − h𝜃(x i)

⃒⃒2

Training set: X train = X[70%]
Test set: X test = X[30%]
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Paradigms, how ML learn from QC examples/data
Two main classes: Supervised and Unsupervised learning

Unsupervised learning, KMeans clusterization:
Input: X (features)

X =

⎡⎢⎢⎣
x1

x2

...
xN

⎤⎥⎥⎦ =

⎡⎢⎢⎣
x1

1 x1
2 ... x1

M
x2

1 x2
2 ... x2

M
... ... ... ...
xN

1 xN
2 ... xN

M

⎤⎥⎥⎦
For a given number of Ci ∈ ℜM

Algorithm:
0) Initialize Ci .
1) xi is associated with the closest Cj .
2) Cj is the mean point of the xi associated.
3) Repeat steps 1 and 2 until convergence.
Problems: Fall in local minimums, equal clusters
sizes, sphere shape
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Machine Learning: Neural Networks

The Perceptron:

f (x) =
{︃

1 if w · x + b ≥ 0
0 else

The Neural Network node:

1

x1

x2

...

Σ f output

b
w1

w2

...

Activation functions:

A Neural Network:

1

x1

x2

a1
2

a2
2

a1
3

a2
3

w1 w2 w3

output
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Gaussian Process Regression
Bayasian Linear Regression

h(x) = xT w, y = h(x) + 𝜀, 𝜀 ∼ N(0, 𝜎2
n)

p(w|y,X) = p(y|X,w)p(w)
p(y|X) , p(w) ∼ N(0, Σ)

where A = 𝜎−2XXT + Σ−1. Predicting h for x′:
p(h(x′)|x′,X, y) = N(x′T A−1Xy, x′T A−1x′)

Seppe
vanden
Broucke et
al.,
medium.com,
2018

The Kernel Trick:
𝜑(x) maps x into another space. Defining
𝜓(x) = Σ1/2𝜑(x) we obtain a dot product
𝜓(xi) ·𝜓(xj) = 𝜑(xi)T Σ𝜑(xj) = k(xi , xj) = kij‘ ∈ ℜ.

Gaussian Process Regression
Applying Φ on x, h(x) = 𝜑(x)T w, one found the
result with k intead 𝜑:

p(h|x′,X, y) = N(𝜑′T ΣΦ(K + 𝜎2I)−1y,S)

S = 𝜑′T Σ𝜑′ − 𝜑′T ΣΦ(K + Σ2I)−1ΦT𝜎𝜑′)

where K = ΦT ΣΦ and Φ = Φ(X).

K =

⎡⎢⎢⎣
k0,0 k0,1 ... k0,N
k1,0 k1,1 ... k1,N
... ... ... ...

kN,0 k0,1 ... k0,N

⎤⎥⎥⎦
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Gaussian Process Regression

C. E.
Rasmussen &
C. K. I.
Williams,
Gaussian
Processes for
Machine
Learning,
2006.
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Examples: Kolsbjerg et al., 2018
ML + Evolutionary algorithm + QC:
∙ ML Model: NN (2 hidden layers, 5
nodes each).
∙ Representation: Gaussian (G2 and G4)
descriptor.
∙ Finding the global minimum structure
with 50% certainty per run:

∙ no NN: ∼170 generations.
∙ +NN: ∼260 generations.
∙ +NN runs successful is delayed.

∙ Successful runs:
∙ no NN: ∼8900 QC calculations.
∙ +NN: ∼260 QC calculations.
∙ +NN reduce # calculations by ×40.

Phys. Rev. B, 97, 2018, 195424
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Examples: Podryabinkin et al., 2019
ML + Evolutionary algorithm + QC:

∙ ML Model: Moment Tensor
Potentials (MTP).

E =
∑︁

i
Vi

Vi =
∑︁

j
wjBj(ui)

∙ Evolutionary algorithm:
USPEX.
∙ Active learning: prediction
“extrapolation”.
∙ Time spend to find the 6
lowest-energy structures reduce
1-4 orders.
∙ Efficiency is improved with
pre-training.

∙ Configuration relaxation inside the
evolutionary algorithm:

∙ Material: Boron allotropes

Phys. Rev. B 99, 064114 (2019)
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Examples: Gómez-Bombarelli et al., 2018

∙ Variational Autoencoder (VAE): a NN used for
dimensionality reduction and generative processes.
∙ SMILES: string representation of molecules.
∙ Predictor model: Gaussian Process
∙ Autoencoder training: 250k molecules (ZINC)
∙ Encodes approximately: 7.5M molecules

ACS Cent. Sci. 4, 2018, 268-276

Nat. Biotechnol., 37, 2019, 1038-1040
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Overview and Conclusions

∙ Quantum Chemistry.
∙ High computational costs.
∙ Many calculations are necessary.

∙ Machine Learning.
∙ Representation.

∙ How ML “see” chemistry structures.
∙ Supervised:

∙ Ex.: NN, gaussian process.
∙ Unsupervised:

∙ Ex.: clustering, VAE.
∙ Wide range of applications:

∙ Ex.: Nanomaterials and Drug Design.
∙ Commonly coupled with other algorithms.
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