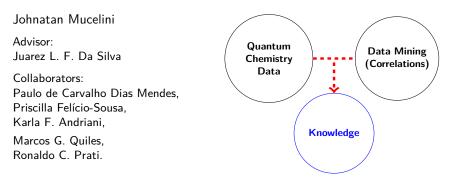


A Correlation and Feature Engineering Framework to Obtain Insights from Quantum Chemistry Datasets



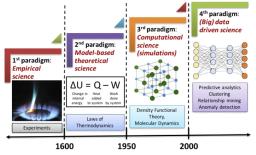
February, 2020

Outline

- Motivation
- Correlation Analysis
 - Pearson, Spearman, and Kendal Correlations
 - Trustfull
 - Applications in QC data
- Feature Engineering
 - Featurization Mining Features Strategy
 - Results Visualization
 - Practical Tips
 - Implementation Quandarium
- Applications
 - Materials
 - Workflow
 - Results
- Conclusions

Motivation

Scenario:



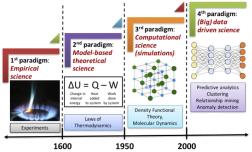
Font: APL Materials, 2016, 4, 053208

Problems in QC Studies:

- Insights are obtained using few calculations;
- Visual description of the atomic systems;
- Trends are visually identified.

Motivation

Scenario:



Proposed **Solution**: to empoloy Correlation Analysis...

- Large amount of data can be used;
- Methodological analysis of trends;
- Easy to calculate and implement.

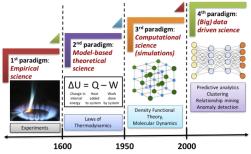
Font: APL Materials, 2016, 4, 053208

Problems in QC Studies:

- Insights are obtained using few calculations;
- Visual description of the atomic systems;
- Trends are visually identified.

Motivation

Scenario:



Problems in QC Studies:

- Insights are obtained using few calculations;
- Visual description of the atomic systems;
- Trends are visually identified.

Proposed **Solution**: to empoloy Correlation Analysis...

- Large amount of data can be used;
- Methodological analysis of trends;
- Easy to calculate and implement.

Chalange: A good featurization processes in mandatory...

Correlation Analysis

Pearson Correlation Coefficient:

 $r = \frac{cov(x, y)}{\sigma(x)\sigma(y)}$

Correlation Interpretation:

- $-1 \ge r \ge 1$
- If X increase, Y is expected to go:

downward

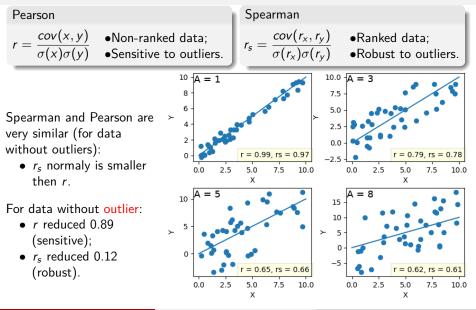
r < 0 < rupward

• How much expected? "How strongly correlated?"

"As large as was |r|."

 $X = \{\text{random points in } (0,1)\} * 10,$ $Y = X * 10 + \{random noise in (-5,5)\}$ $^{10} - A = 1$ 10.0 - A = 38 7.5 6 5.0 ≻ 4 2.5 2 0.0 r = 0.99r = 0.790 -2.5 2.5 5.0 7.5 10.0 2.5 5.0 7.5 0.0 0.0 10.0 х х = 5 = 8 10 15 -10 5 ≻ 5 0 -5 r = 0.65 r = 0.622.5 5.0 7.5 10.0 2.5 5.0 7.5 0.0 0.0 10.0 х х

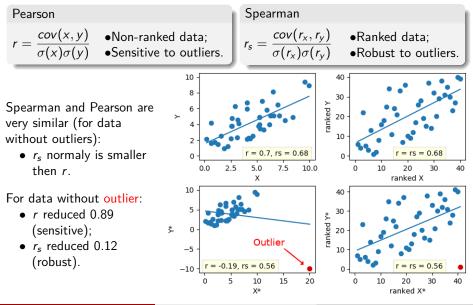
Pearson, Spearman, and Kendall Correlations



Johnatan Mucelin

New Framework to Obtain Insights from QC data

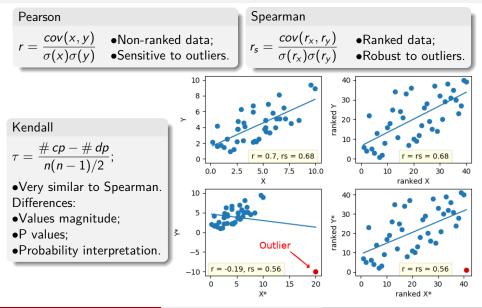
Pearson, Spearman, and Kendall Correlations



Johnatan Mucelin

New Framework to Obtain Insights from QC data

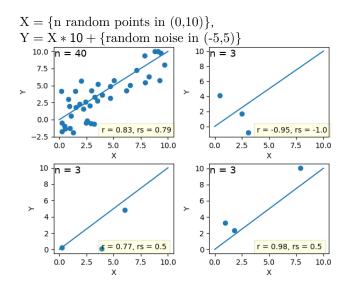
Pearson, Spearman, and Kendall Correlations



Significance of the Correlations

Should I trust large correlations?

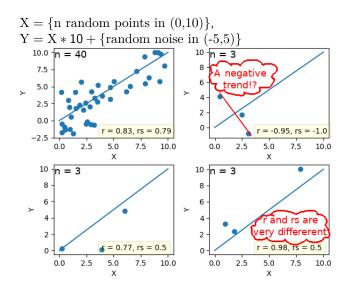
It depend on data **size** and its **distribution**.



Significance of the Correlations

Should I trust large correlations?

It depend on data **size** and its **distribution**.

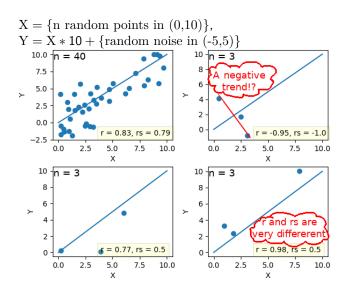


Significance of the Correlations

Should I trust large correlations?

It depend on data **size** and its **distribution**.

Good practice: Hypothesis test and P-values.



Bootstrap

Frequancy

Data Resampling Methods with Replacement (Ex.: $[1,3,4,5] \rightarrow [1,1,3,5]$).

 $\label{eq:original samples} \mathsf{Original \ samples} \to \mathsf{Bootstrap \ samples} \to \mathsf{Statistical \ Information}$

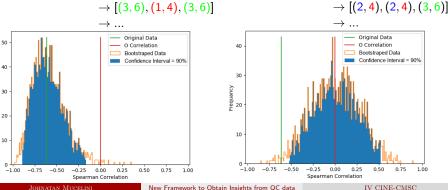
The **alternative hypothesis**: X and Y are correlated $(r_s \neq 0)$.

$$\begin{split} [(1,4),(2,5),(3,6)] &\to [(1,4),(2,5),(2,6)] \\ &\to [(3,6),(1,4),(2,5)] \\ &\to [(3,6),(1,4),(3,6)] \end{split}$$

The **null hypothesis**: X and Y are **not** correlated, $(r_s = 0)$.

 $[(1,4),(2,5),(3,6)] \rightarrow [(1,6),(3,5),(1,4)]$

 \rightarrow [(3, 5), (1, 6), (2, 4)]



⁷

Featurization - Challenge

WL	attribute-value table	feature0 feature1		feature2		
M/N put:	sample0	data00	data01	data02		
NC	sample1	data10	data11	data12		
_						

- Initial Data: Molecular info (structured data):
 - Energy [-42.0 eV];
 - HOMO [-4.123 eV];

Atomic info (attribute-vector):

- Exposed to vacuum [True, False, ...];
- Atomic Charges [0.7, -0.8, ...].

	All data table	Energy	НОМО	Charges	
lnitial Data:	molecule0 molecule1			[0.7, -0.8,] [0.6, -0.3,]	
	molecule1	-42.1	-4.042	[0.0, -0.3,]	

Featurization - Challenge

DM/ML Input:	attribute-value table	feature0	feature1	feature2		
ut:	sample0	data00	data01	data02		
N	sample1	data10	data11	data12		
Initial Data:	Molecular info (structured data):Atomic info (attribute-vector):• Energy [-42.0 eV];• Exposed to vacuum [True, False,• HOMO [-4.123 eV];• Atomic Charges [0.7, -0.8,].			um [True, False,];		
	All data table	Energy	НОМО	Charges		
Initia Data:	molecule0	-42.0	-4.123	[0.7, -0.8,]		
Da	molecule1	-42.1	-4.042	[0.6, -0.3,]		

How to get molecular data from atomic data?

```
Average per atoms???
Average per atomic species???
```

Featurization - Mining Features Strategy

How to get molecular data from atomic data?

Take **molecular data** from **operator** over a **bag** (properties), for all or a **class** of atoms.

$$\underbrace{OPERATOR(OP)}_{\text{average}} \left[\underbrace{BAG}_{\text{ECN}} \left[\underbrace{CLASS}_{\text{Pt}} \right] \right] = OP \left[\underbrace{Selected_Data}_{\text{Pt atoms ECN}} \right] = Molecular_Data$$

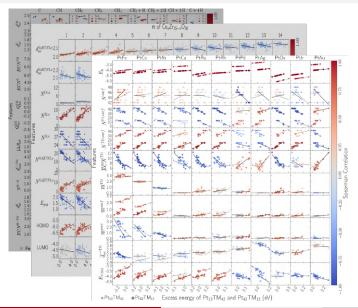
$$Av. \begin{bmatrix} 1.1\\ 3.3\\ 2.2\\ 3.1 \end{bmatrix} = Av. \begin{bmatrix} 1.1\\ 2.2 \end{bmatrix} = 1.65$$

Operator: Operates over an array argument, and return a number (Ex.: sum). **Bag**: Array with atomic data (Ex.: d_{av})...

Classes: Set of atoms that meet a condition! Ex.:

- O; O exposed to the vacuum with 1 < ECN < 2;
- O exposed to the vacuum; (be criative)...

Results Visualization



Scatter-plot Matrix:

- Rows: Features;
- Columns: Groups of data. (to avoid Simpson's paradox)

Cell:

- Scatter-plot;
- Y axis: Feature;
- X axis: Energy;
- Correlation: Colors;
- Linear Model.

Practical Tips

Tipical Problem	Tips		
	1) If especific classes? Generalize your classes.		
Small significace,	2) If general classes? Split more your classes.		
small correlations.	3) Else, probable the features are not suitable. Then, be		
	creative and develop new features for your study case.		
Small significace,	Probable a few samples (ex.: $n < 15$) case. Then,		
large correlations.	generalize you classes to have more samples or calculate		
	more samples.		
Unexpected	A may be correlated with C that is correlated with B.		
correlation A vs B	Verify other features searching for a C		
Expected correlation	If B is based in a atomic feature, Generalize or especify		
A vs B is too small	the classes.		
Good Scenarios	Tips		
Large significace,	It is not a problem. But you can try to specify more		
small correlations.	your classes to get more crucial features.		
Large significace,	It is not a problem. Already get crusial features.		
Large correlations.	te is not a problem. Aneady get crusial leatures.		

Implementation - Quandarium

Create your data mining procedure. Usage:

- Find Calculation \rightarrow Extract Info \rightarrow Molecular Analysis \rightarrow Featurization \rightarrow Plots
- + Find Calculation \rightarrow Extract Info \rightarrow Molecular Analysis \rightarrow Save Data
- Read Data \rightarrow Featurization \rightarrow Save Data
- Read Data \rightarrow Plots

Find Calculation:

• Search calculations folders.

Extract Info:

- •Energy; •State Energies;
- •Positions; •Chemical Species;
- •Charges, •....

Molecular Analysis:

- •*ECN*; •*d*_{av}; •Connectivy;
- •Surf_or_core; •Site_geometry;
- •Number_of_conections.

Featurization:

- $\bullet \ \mathsf{bag} \leftrightarrow \mathsf{class}$
- class1, class2 \rightarrow class3
- $\bullet \ bag1 \to bag2$
- bag1, bag2, ... \rightarrow bag3
- bag[class] \rightarrow molecular_data
- bag \rightarrow molecular_data
- $\bullet \ \ \mathsf{class} \to \mathsf{molecular_data}$

Plots:

- Scatternplot with correlations;
- Bag histograms.

It operate recursively!

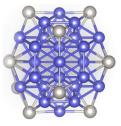
Introduction - Materials

 $\operatorname{Zr}_q\operatorname{Ce}_{15\text{-}q}\operatorname{O}_{30}$

•Employed in TWC and candidate for others process. •Explore material in nanoparticles structures.

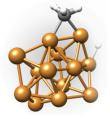
Motivation:

- Develop the chem/comp overlap;
- Develop material science area.



 $Pt_{I}TM_{55-I}$

Pt-based Catalysts are wildly employed.
Explore this alloys structural preferences.



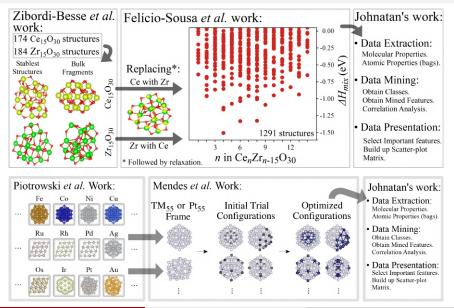
$CH_m/xH/TM_{13}$

- $\bullet CH_4$ dehydrogenation candidates.
- •Reaction intermediates study.

Objectives:

- Find new patterns;
- Initial Studies;
- Tools Development.

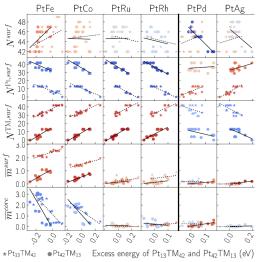
Workflow



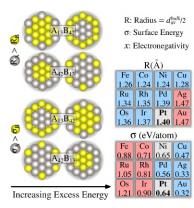
Johnatan Mucelin

New Framework to Obtain Insights from QC data

Results - PtTM

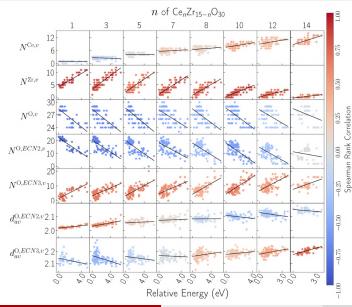


- High correlation! Few samples.
- TM vs Pt sites preference (N,ECN);
- Influence in other properties (*m*,*d*_{av});



Article: J. Phys. Chem., **2020**, 124, 1, 1158-1164.

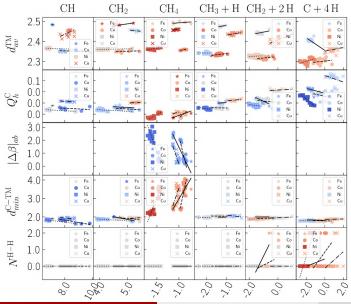
Results - $Ce_n Zr_{15-n}O_{30}$



- High $n \rightarrow$ Significant correlation!
- Both Ce vs Zr prefer core sites;
- Zr trend is stronger;
- O prefer surface sites with ECN=2.
- Trends differ for each O species;

Article: *Phys. Chem. Chem. Phys.*, **2019**, 21, 26637-26646.

Results - $CH_n/H_m/TM_{13}$



- Data distribution problems;
- Trends change irregular with the systems;
- Few samples per many sistems.

Article submitted for the journal Fuel.

Conclusion

This Framework employed in QC datasets:

Benefits:

- Easy access to useful chemistry information;
- Quantitative trends analysis;
- Very little explored.

Limitation:

• Small dataset size;

Applicability:

- Can be applied to any material;
- Require small programming skills;
- Require some statistical concepts.

Acknowledgements

Thanks for your Attention!

New Framework to Obtain Insights from QC data

