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Problems in QC Studies:
e Insights are obtained using few calculations;
e Visual description of the atomic systems;
e Trends are visually identified.
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Problems in QC Studies:
e Insights are obtained using few calculations;
e Visual description of the atomic systems;
e Trends are visually identified.

New Framework to Obtain Insights from QC data IV CINE-CMSC



QUSRI NE O OR INUNI SA0 CARLOS INSTITUTE OF CHEMISTRY

Correlation Analysis

Pearson Correlation L
X = {random points in (0,1)} = 10,

Coefficient: D
Y = X %10 + {random noise in (-5,5)}
~cov(x,y) 108 =1 10.0 1
~a(x)a(y) e 751
6 5.0 4
Correlation Interpretation: 4 .
o —1>r>1 24 004
e If X increase, Y is 041 s 1 —25le . . .
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’ X X
downward
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r< 0<r
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upward .
e How much expected?

“How strongly correlated?” w y w
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“As large as was |r|.”
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Pearson, Spearman, and Kendall Correlations

Pearson Spearman
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Pearson, Spearman, and Kendall Correlations

Pearson Spearman
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Pearson, Spearman, and Kendall Correlations

Pearson

cov(x,y)

eNon-ranked data;
o(x)o(y) eSensitive to outliers.

Spearman

cov(ry, ry)

a(rdo(ry)

eRanked data;
eRobust to outliers.

Kendall
_ H#cp—H#dp,
~ n(n—1)/2"

eVery similar to Spearman.

Differences:
eValues magnitude;
oP values;

eProbability interpretation.
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Significance of the Correlations

X = {n random points in (0,10)},
Y = X % 10 + {random noise in (-5,5)}
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Significance of the Correlations

Should | trust
large
correlations?

It depend on data size
and its distribution.
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Significance of the Correlations

Should | trust
large
correlations?

It depend on data size
and its distribution.

Good practice:
Hypothesis test and
P-values.

SA0 CARLOS INSTITUTE OF CHEMISTRY

X = {n random points in (0,10)},
Y = X % 10 + {random noise in (-5,5)}

10.0 1 104
1 8 - .
75 A negative
5.0 4 6 trend!?
> 4]
254 %
2,
0.0 4
’.. r=083,rs=079 01 r=-0.95rs=-10
-2.5 4 ‘ ‘ : : T . T . .
00 25 50 75 100 00 25 50 75 100
X X
104 = 3 0nh=3 ®
8 8
6 6
=
44 44 rand rs are
21 21
o §=077,15=05 o r=0.98T5 =05

T T
0.0 2.5 5.0 75
X

T
10.0

New Framework to Obtain Insights from QC data

T T T
0.0 2.5 5.0 75

X

IV CINE-CMSC

T
10.0



UNIVERSITY OF SA0 PAULO

Bootstrap

Data Resampling Methods with Replacement (Ex.:

SA0 CARLOS INSTITUTE OF CHEMISTRY

[1,3,4,5] = [1,1,3,5]).

Original samples — Bootstrap samples — Statistical Information

The alternative hypothesis: X and Y
are correlated (rs # 0).

[(1,4),(2,5),(3.6)] = [(1,4),(2,5),(2,6)]
—[(3,6),(1,4),(2,5)]
—1(3,6),(1,4),(3,0)]

) Bootstraped Data
mmm Confidence Interval = 90%

Frequancy

n! LN PP

] T T T
-1.00 -0.75 -050 -025 000 025 050 075 100

Spearman Correlation
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The null hypothesis: X and Y are not
correlated, (r; = 0).
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Featurization - Challenge

attribute-value

— feature0 featurel feature2...
s . table
~ 5 sample0 | data00 data0l data02
E g— samplel | datal0 datall datal2
= s Molecular info (structured data): Atomic info (attribute-vector):
2R e Energy [-42.0eV]; e Exposed to vacuum [True, False, ...];
£ e HOMO [-4.123¢V]; e Atomic Charges [0.7, -0.8, ..].
All data table | Energy HOMO Charges
=8 moleculed | 420  -4.123 [0.7, 08, ]
e

moleculel | -42.1  -4.042 [0.6, -0.3, ..]
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Featurization - Challenge

attribute-value

— feature0 featurel feature2...
s . table
~ 5 sample0 | data00 data0l data02
E g— samplel | datal0 datall datal2
= s Molecular info (structured data): Atomic info (attribute-vector):
2R e Energy [-42.0eV]; e Exposed to vacuum [True, False, ...];
£ e HOMO [-4.123¢V]; e Atomic Charges [0.7, -0.8, ..].
All data table | Energy HOMO Charges
=8 moleculed | 420  -4.123 [0.7, 08, ]
e

moleculel | -42.1  -4.042 [0.6, -0.3, ..]

How to get molecular data from atomic data?

Average per atoms?77?
Average per atomic species???
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Featurization - Mining Features Strategy

How to get molecular data from atomic data?

Take molecular data from operator over a bag (properties), for all or a class of

atoms.
OPERATOR(OP) | BAG
S~~~ L
average ECN
Av.

CLASS 1= OP[ Selected_Data | = Molecular_Data
~—— | —_—
Pt g Pt atoms ECN

Av| MY =165
22

Operator: Operates over an array argument, and return a number (Ex.: sum).
Bag: Array with atomic data (Ex.: d,)...
Classes: Set of atoms that meet a condition! Ex.:

o O

e O exposed to the vacuum with 1 < ECN < 2;

e O exposed to the vacuum; e (be criative)...

JOHNATAN MUCELINI
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Results Visualization

JOHN!/

New Framework to Obtain Insights from QC data

Scatter-plot Matrix:

e Rows: Features;

e Columns: Groups
of data. (to avoid
Simpson'’s paradox)

Cell:

Scatter-plot;

Y axis: Feature;

X axis: Energy;
Correlation: Colors;
Linear Model.
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Practical Tips

Tipical Problem | Tips
1) If especific classes? Generalize your classes.

Small significace, | 2) If general classes? Split more your classes.
small correlations. | 3) Else, probable the features are not suitable. Then, be
creative and develop new features for your study case.
Probable a few samples (ex.: n < 15) case. Then,
generalize you classes to have more samples or calculate

more samples.
Unexpected | A may be correlated with C that is correlated with B.

correlation A vs B | Verify other features searching for a C...
Expected correlation | If B is based in a atomic feature, Generalize or especify
A vs B is too small | the classes.

Small significace,
large correlations.

Good Scenarios | Tips
Large significace, | It is not a problem. But you can try to specify more
small correlations. | your classes to get more crucial features.
Large significace,
Large correlations.

It is not a problem. Already get crusial features.

New Framework to Obtain Insights from QC data IV CINE-CMSC 11
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Implementation - Quandarium

Create your data mining procedure. Usage:

Read Data — Plots

Find Calculation — Extract Info — Molecular Analysis — Featurization — Plots
Find Calculation — Extract Info — Molecular Analysis — Save Data
Read Data — Featurization — Save Data

SA0 CARLOS INSTITUTE OF CHEMISTRY

Find Calculation:

e Search calculations foIders.J

Extract Info:

oEnergy; oState Energies;
ePositions; eChemical Species;
eCharges, o....

Molecular Analysis:

eECN; ed,,; eConnectivy;
eSurf_or_core; eSite_geometry;

eNumber_of_conections. )

JOHNATAN MUCE

Featurization:

bag <> class

classl, class2 — class3
bagl — bag2

bagl, bag2, ... — bag3

bag[class] — molecular_data
bag — molecular_data
class — molecular_data

New Framework to Obtain Insights from QC data

Plots:

e Scatternplot with
correlations;
e Bag histograms.

It operate
recursively!

IV CINE-CMSC 12
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Introduction - Materials

quCe15_qO30 Pt/TM55_I CHm/XH/TM13
eEmployed in TWC and ePt-based Catalysts are oCH, dehydrogenation
candidate for others process. | wildly employed. candidates.
eExplore material in eExplore this alloys eReaction intermediates
nanoparticles structures. structural preferences. study.
Motivation: Objectives:
e Develop the chem/comp overlap; e Find new patterns;
e Develop material science area. e Initial Studies;

e Tools Development.

JOHNATAN MUCE New Framework to Obtain Insights from QC data IV CINE-CMSC 13
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Workflow

New Framework to Obtain Insights from QC data
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Results - PtTM

e High correlation! Few samples.

e TM vs Pt sites preference (N,ECN);
e Influence in other properties (m,d.,);

Article: J. Phys. Chem., 2020, 124, 1,
1158-1164.
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Results - Ce,Zr;5,,05

JOHNATAN MUCELINI

Article: Phys. Chem.

High n —
Significant
correlation!

Both Ce vs Zr
prefer core sites;
Zr trend is
stronger;

O prefer surface
sites with ECN=2.
Trends differ for

each O species;

Chem. Phys., 2019,
21, 26637-26646.
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Results - CH,/H,,/TM;

JOHN!/

New Framework to Obtain Insights from QC data

e Data distribution
problems;

e Trends change
irregular with the
systems;

e Few samples per
many sistems.

Article submitted for
the journal Fuel.
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Conclusion

This Framework employed in QC datasets:

Benefits:
e Easy access to useful chemistry information;
e Quantitative trends analysis;
e Very little explored.

Limitation:
e Small dataset size;

Applicability:
e Can be applied to any material,
e Require small programming skills;
e Require some statistical concepts.
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