

Data Mining Tools Applied to Quantum Chemistry Data

Introduction - Materials

 $\operatorname{Zr}_q\operatorname{Ce}_{15\text{-}q}\operatorname{O}_{30}$

•Employed in TWC and candidate for others process. •Explore material in nanoparticles structures.

Motivation:

- Develop the chem/comp overlap;
- Develop material science area.

 $Pt_{I}TM_{55-I}$

Pt-based Catalysts are wildly employed.
Explore this alloys structural preferences.

$CH_m/xH/TM_{13}$

- $\bullet CH_4$ dehydrogenation candidates.
- •Reaction intermediates study.

Objectives:

- Find new patterns;
- Initial Studies;
- Tools Development.

Data Mining - Challenge

Initial Data: Molecular info (structured data):

- Energy [-42.0 eV];
- HOMO [-4.123 eV];

Atomic info (attribute-vector):

- Exposed to vacuum [True, False, ...];
- Atomic Charges [0.7, -0.8, ...].

٦L	attribute-value table	feature0	feature1	
ut:	sample0	data00	data01	
⊿ L D L	sample1	data10	data11	

Data Mining - Challenge

Quandarium (python):

- Find Calc. Find surf.
- Extract Info. atoms
- Geometical Connections Analysis: Analysis
- ECN/d_{av}

It operate recursively!

Initial Data: Molecular info (structured data):

- Energy [-42.0 eV];
- HOMO [-4.123 eV];

Atomic info (attribute-vector):

- Exposed to vacuum [True, False, ...];
- Atomic Charges [0.7, -0.8, ...].

٦L	attribute-value table	feature0	feature1	
M/N out:	sample0	data00	data01	
	sample1	data10	datall	•••

Data Mining - Challenge

Quandarium (python):

- Find Calc. Find surf.
- Extract Info. atoms
- Geometical Connections Analysis: Analysis
- ECN/d_{av}

It operate recursively!

Initial Data: Molecular info (structured data):

- Energy [-42.0 eV];
- HOMO [-4.123 eV];

Atomic info (attribute-vector):

- Exposed to vacuum [True, False, ...];
- Atomic Charges [0.7, -0.8, ...].

٦L	attribute-value table	feature0	feature1	
DM/N Input:	sample0 sample1	data00 data10	data01 data11	

How to get molecular data from atomic data?

Data Mining

How to get molecular data from atomic data?

Take **molecular data** from **operator** over a **bag** (properties), for all or a **class** of atoms.

Operator: Operates over one or more arguments, and return a number (Ex.: sum).

Classes: Set of atoms that meet a condition!

• Ex.: O, O exposed to the vacuum, O exposed to the vacuum with 1 < *ECN* < 2,

Data Mining

How to get molecular data from atomic data?

Take **molecular data** from **operator** over a **bag** (properties), for all or a **class** of atoms.

 $Molecular_Data = \underbrace{OPERATOR}_{average} \left[\underbrace{BAG}_{ECN} \left[\underbrace{CLASS}_{Pt} \right] \right]$ $1.65 = Av. \left[\begin{bmatrix} 1.1\\ 2.2 \end{bmatrix} \right] = Av. \left[\begin{bmatrix} 1.1\\ 3.3\\ 2.2\\ 3.1 \end{bmatrix} \right]$

Operator: Operates over one or more arguments, and return a number (Ex.: sum).

Classes: Set of atoms that meet a condition!

• Ex.: O, O exposed to the vacuum, O exposed to the vacuum with 1 < *ECN* < 2,

JOHNATAN MUCELIN

4

Flexible data manipulation: • bag \rightarrow class

Quandarium (python):

- class1 + class2 \rightarrow class3
- $\bullet \ \mathsf{class} + \mathsf{bag} \to \mathsf{class}$
- $\bullet \ \mathsf{class} \to \mathsf{bag}$

It operate recursively!

Data Mining

How to get molecular data from atomic data?

Take **molecular data** from **operator** over a **bag** (properties), for all or a **class** of atoms.

$Molecular_Data = \underbrace{OPERATOR}_{average} \left[\right]$	$\underset{ECN}{\overset{BAG}{}} \left[\underbrace{CLASS}_{Pt} \right]$
1.65 = Av. $\begin{bmatrix} 1.1\\ 2.2 \end{bmatrix}$ = Av.	1.1 3.3 2.2 3.1

Operator: Operates over one or more arguments, and return a number (Ex.: sum).

Classes: Set of atoms that meet a condition!

• Ex.: O, O exposed to the vacuum, O exposed to the vacuum with 1 < *ECN* < 2,

Quandarium (python):

Flexible data manipulation:

- $\bullet \ \mathsf{bag} \to \mathsf{class}$
- class1 + class2 \rightarrow class3
- $\bullet \ \mathsf{class} + \mathsf{bag} \to \mathsf{class}$
- $\bullet \ \mathsf{class} \to \mathsf{bag}$

It operate recursively!

Thus we access many molecular data (attribute-value table). Lets **analyse** the data!

Correlation Analysis

JOHNATAN MUCELIN

DM Applied to QC Data

Correlation Analysis

DM Applied to QC Data

Correlation Analysis

Data Representation

Scatter-plot Matrix:

- Rows: Features;
- Columns: Dataset part.

Cell:

- Scatter-plot;
- Y axis: Feature;
- X axis: Energy;
- Correlation: Colors;
- Linear Model.

Data Representation

Scatter-plot Matrix:

- Rows: Features;
- Columns: Dataset part.

Cell:

- Scatter-plot;
- Y axis: Feature;
- X axis: Energy;
- Correlation: Colors;
- Linear Model.

Quandarium:

- Scatternplot
- bag histograms

Results

Conclusion

Quantum Chemistry Data Mining with Correlations:

Analysis Benefits:

- Easy access to useful chemistry information;
- Quantitative trends analysis;
- Very little explored.

Analysis Limitation:

- Small dataset size;
- Many variables in the study.

Analysis Applicability:

- Can be applied to any material;
- Require small programming skills;
- Require some statistical concepts.

Perspectives 2019 - 2020

Complete the data mining works in progress!

Molecules over TM

• CH_n/H_m/TM₁₃ Dataset (previously presented).

Perovskites

 Solid State Feature Extraction.

Article: Nanocluster DM Analysis

- DM and correlation analysis;
- For chemists;
- 5 QC datasets (3+2);
- Release Quandarium.

TM Nanoclusters and Alloys Energy Regression:

TM nanoclusters and alloys:

- Employ several previous QTNano studies (TM₁₃, TM₅₅);
- Methodological normalisation;
- Algorithms: MLP, random-forest, kernel regression...

Acknowledgements

Thanks for your Attention!