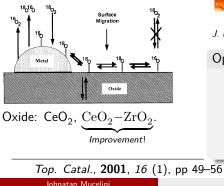
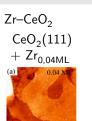


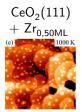
Ab Initio Investigation of Zr Adatoms on the $CeO_2(111)$ surface

Authors: Johnatan Mucelini Dr. Yohanna Seminovski M.Sc. Rafael Costa Amaral Prof. Dr. Juarez L. F. Da Silva


December of 2017


Motivation: CeO₂ catalysts applications

Catalysts support:


- Three way catalysts.
- Steam Reforming.
- Water-gas Shift Reaction.

Realistic catalyst:

300~K 300~K 1000~K J. Phys. Chem. C, 2015, 119 (32), pp 18257–18266

Open problems:

III EQC

- What is the magnitude and nature of those interactions?
- Will Zr stay above the surface? inside the surface? or in bulk region?
- What changes Zr induce to CeO₂ surfaces?

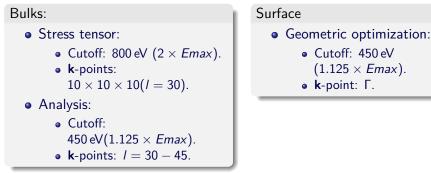
QTNano

2 / 9

1), pp 49–56 *J. Catal.*, **2000**, *193* (2), pp 273–282

Theoretical Approach

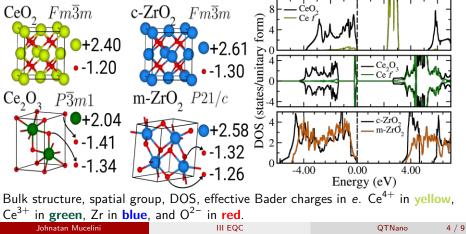
• DFT-PBE + <u>Hubbard U term to Ce</u> f-states in \mathcal{W} code.


Correct it localization

Clean Surface

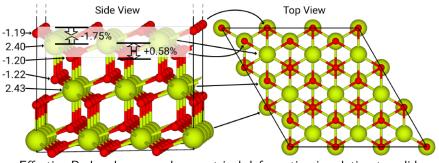
 $CeO_{2}(111)$

Adsorbed surface. $Zr/CeO_{2}(111)$


Based in our computational parameters testes:

Bulks Ex.: CeO₂

Bulks: CeO_2 , Ce_2O_3 and ZrO_2


- Low energy bulk structures: cubic CeO_2 (fluorite), hexagonal Ce_2O_3 (lanthana), monoclinic ZrO_2 (baddeleyite).
- Comparison Ce and Zr: cubic ZrO₂.
- Stress tensor calculations.
- DOS, Bader.

Unreduced $CeO_2(111)$ Surface and Zr Adsorption Sites

- Size: 3×3 (primitive CeO₂(111)).
- Layers: 9 (3Ce + 6O)
- Last 3 layers: kept frozen in this relaxed geometry. ↑ 12 Å vacuum ↑

- Zr deposition: hcp-hollow, fcc-hollow, bridge, and top.
- O migration.
- Zr penetration on the surface.

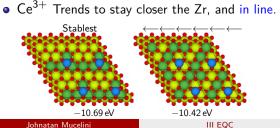
Effective Bader charges and geometrical deformation in relation to solid.

$Zr/CeO_2(111)$: Geometrical and Energetic Analysis

- Low energy coordination site: hcp-hollow!
- Zr oxidize to Zr^{4+} and some Ce^{+4} reduce to Ce^{3+}
- Lowest energy system with Zr in the surface

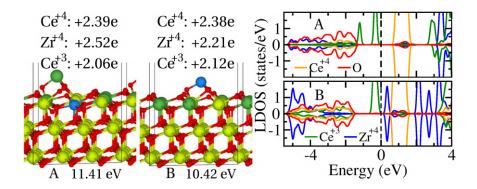
Ionic Interaction:

- \bullet Stability: $Ce^{4+}{-}O < Zr^{4+}{-}O$
- More coordination if Zr inside the bulk!
- O more reduced: $O-Ce^{3+}>O-Ce^{4+}$


Stress:

- \bullet lonic radius: $Ce^{3+}{>}Ce^{4+}{>}Zr^{4+}$
- Ce³⁺ introduce stress.
- Zr⁴⁺ could reduce it.

Electrostatic Repulsion:

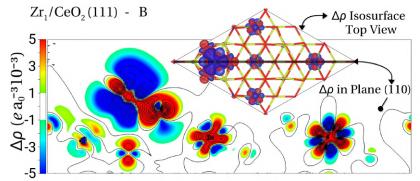

 \bullet Cations repulsion: $Zr^{4+}{-}Ce^{3+} < Zr^{4+}{-}Ce^{4+}$

• Highness: Exp.: 1.4 Å *J. Catal.*, **2000**, *193* (2), pp 273–282 Calc.: 1.58 Å

QTNano 6 / 9

$Zr/CeO_2(111)$: Electronic Analysis

Evidence of:


$$\mathrm{Zr}^0_\mathrm{g} + 4\mathrm{Ce}^{\mathrm{IV}}{}_{\mathrm{surf}} \longrightarrow \mathrm{Zr}^{\mathrm{IV}}{}_{\mathrm{ad}} + 4\mathrm{Ce}^{\mathrm{III}}{}_{\mathrm{surf}}$$

• Bader charges, DOS, magnetization, and bond lengths.

Johnatan Mucelini

$Zr/CeO_2(111)$: Electron Density Difference Analysis

1°: $CeO_2(111) \longrightarrow CeO_2(111)^*$

- 3 O oxidize (close to Zr).
- 4 Ce^{IV} partial reduce to Ce^{III}. 3 O reduce.

 2° : CeO₂(111)^{*} + Zr \longrightarrow Zr/CeO₂(111)

- Zr oxidize to Zr^{IV}
- 4 Ce^{III} finish to reduce.

Conclusion

- Low energy coordination site to Zr adatom above the ceria surface: hcp-hollow.
- Low energy site to Zr atom in partial reduced ceria surface: in the surface.
- Zr introduction modification in unreduced CeO₂(111):
 - Change in cations nature.
 - Introduce strain in the surface.
- We present several analysis to found Ce^{3+} in partial reduced $CeO_2(111)$.

Acknowledgments to:

Organizer committee, audience,

